Geomorphic and Ecological Basis for Restoring Stage 0, and Introduction to Sessions

Brian Cluer and Colin Thorne

Goals for the talk:

- Origin and context for SEM and Stage 0 concept
- Attributes of Stage 0 streams
- Introduction to the presentations

The Channel Evolution Model

INCISED CHANNELS
Morphology, Dynamics, and
Control

Schumm, S. A., Harvey, M. D. & Watson, C. C. (1984).

Water Resources
Publications,
Littleton, Colorado.

Schumm, S. A., Harvey, M. D., & Watson, C. C. (1984). *Incised channels: morphology, dynamics, and control.* Water Resources Publications.

Simon, A. & Hupp, C. R. 1986. Channel evolution in modified Tennessee channels. In, Proc. 4th Interagency Sedimentation Conf., Las Vegas, NV. US Govt., Washington DC, 8.22-8.29.

Colin Thorne 1999 - Late Stage Evolution

Stage 7 "Laterally Active"

Proposed addition to CEM: Stage VI (Schumm, Harvey and Watson) Stage VII (Simon and Hupp).

Thorne, C.R. 1999. Bank Processes and Channel Evolution in the Incised Rivers of North-Central Mississippi, <u>Incised River Channels</u>, Darby and Simon (eds.), Wiley, ISBN 0-471-98446-9, 97-122.

Can the CEM be extended further?

North Central Nevada

Example from Europe - Upper River Rhine at Breisach Germany

Anastomosed 1828 – Prior to river training

Anabranched 1872 – after re-alignment by Johann Gottfried Tulla

Meandering 1963 – fully canalised single-thread

Historic reconstructions:

- Grossinger et al in California
- Walter and Merritts in Eastern Piedmont
- Brown and Sear in UK
- many others

Observations:

- Willow Creek
- Family farm
- many others

Geomorphic Template

Geomorphic Template

SEM derived from CEM

Part 2

Principles of functional ecology link habitat and ecosystem benefits to each SEM Stage.

 The potential for a stream to support rich, resilient and diverse ecosystems increases with morphological diversity, scale and hydroperiod.

Literature: attributes and benefits

- Hydrogeomorphic attributes (26)
 - Number and dimensions, channel
 - Hydrologic regime, floodplain
 - Hydraulic complexity
 - Channel and floodplain features
 - Substrate sorting/patchiness
 - Vegetation sediment interaction
- Habitat and Ecosystem Benefit attributes (11)
 - Refugia in extremes flood/drought
 - Water quality clarity/temperature/nutrient cycling
 - Biota diversity/natives/1° & 2° productivity
 - Resilience to disturbance

Ordinal Score:

o = absent

1 = scarce/partly functional

2 = present and functional

3 = abundant/fully functional

Ecosystem overlay

What Distinguishes Stage 0? and What Ecosystem Services Does Stage 0 Deliver?

PHYSICAL:

DEPOSITION ZONES

- Transport capacity limited.
- When mature, supply and capacity may balance, with strong particle exchange and sorting.

Sediment supply zone:

Weathering and erosion of steep slopes. Multiple tributaries collect sediment and supply it to the mainstem. Forced settings have single thread channels. Intermittent mountain meadows and valleys have Stage 0-1 channels where undisturbed.

Alluvial fan zone:

Depositional fans accumulate coarse sediment, buffering transfers downstream. Frequent avulsions in multiple Stage 0-1 channels, if undisturbed.

Transfer zone:

Main stream receives and exchanges coarse sediment loads with floodplain, buffering downstream transfer. Domain of Stage 0-1 channels if undisturbed.

Deposition zone:

Fine sediment is naturally deposited on floodplain/coastal plain or as a delta. Domain of Stage 0-1 channels if undisturbed.

2. Large accommodation space

- Maximal flood attenuation.
- Maximal GW recharge
- Maximal sediment pulse attenuation.
- Resilient to entire range of watershed processes and pulses.

3. High water table

- No deep drainage channel.
- Stream flow and ground water connection.
- High interaction between flow, sediment, and vegetation.
- Small channels easily moderated by vegetation.

Vegetation Attributes

- Frequent, small channel adjustments and high, reliable water table - proliferation and succession of aquatic, emergent, riparian and floodplain plants.
- Dense vegetation interacting with and moderating physical processes.
- High wood supply and retention.
- Abundant leaf litter.

- Morphological diversity inchannel and on the extensive and fully connected floodplain.
- Branches create multiple, marginal deadwaters, and maximum hydraulic diversity.

 Hydraulic diversity drives numerous, wellsorted bed material patches.

Biota

- Highest possible biodiversity (species richness and trophic diversity) and proportion of native species.
- 1st and 2nd order productivity in quiet shallow water.
- Highest productivity across maximal space.

Higher growth rate and Higher abundance

J. Katz 2016

High water quality

- Capacity to store sediment and other suspended solids.
- Cycle nutrients.
- Dense, diverse vegetation abundant shade.
- Together with efficient hyporhesis, effective in ameliorating high and low temperatures.

Stage 0 sessions:

SESSION 1, Science Base, Historical Perspectives & Natural Functions

- Brian Cluer geomorphic and ecological basis for restoring Stage 0
- Robin Grossinger historical basis for restoring to Stage 0
- Mark Beardsley restoring historic widespread Stage 0 in the Southern Rocky Mountains
- Jenny Mant Flood management and ecological benefits? Fact or fiction British perspective
- Johan Hogervorst A 10 minute history of National Forest restoration of depositional areas.

Stage 0 sessions:

SESSION 2, HOW: Design and Case Studies

- Paul Powers A Proposed Stage 0 Restoration Approach,
 Design, and Construction
- Kate Meyer Case Study Cascades, Deer Creek OR
- Paul Burns Case Study Coastal, Five Mile Bell OR
- Lauren Hammack Natural development of Stage 0 wetland complex, coastal Willow Creek CA
- General Discussion and Q+A

Stage 0 related posters:

- Castro and Thorne Stream Evolution Triangle: accounting for geology, hydrology and biology in understanding stream morphology and evolution
- Kurian and Squires Restoring Staley Creek OR to Stage 0
- Pollock et al. Stage 0 concepts applied to mountain meadow restoration
- Press Restoring high desert Whychus Creek OR to Stage 0
- Tanaka et al. Functional secondary channels

Thank you.

brian.cluer@noaa.gov

